

Project Number	7
Name/title of the	Doctoral Thesis in Earth and Environmental Sciences
PhD course	
Name/Title of the	Permeability and migration paths up to the surface at the scale of the rock mass
PhD project	
Recruiting	ISTerre laboratory is part of the Université Grenoble Alpes, and it is a world leading research institution in
organisation and	geoscience (ranked 24th by the Shanghai QS ranking; Earth Science field 2022), with 110 permanents
Department/Faculty	scientists and 41 engineers. ISTerre has a strong expertise in the field of H ₂ generation, migration and reactivity
of reference	in geological environments with five permanents scientists and three engineers working in this field for more
	than one decade. The PhD student will work in the Natural Hydrogen Observatory Group Grenoble
	(<u>https://nativeh2project.osug.fr/</u>) led by Laurent Truche & Frederic Victor Donzé. Equipment and
Scientific context	infrastructures available to the recruited DC is presented in the Web site of the H ₂ group. Fault zones crossing caprocks are critical objects for massive storage of H ₂ in porous reservoirs. We have
and Objetives	shown recently that subcritical mechanical response of a fault may be enough to explain why the permeability
and Objetives	of a fault zone can increase by several orders of magnitude when slightly increasing the fluid pressure, while
	strain records do exhibit generally very low plastic deformation (Donzé et al. 2020). This has been observed
	during fluid injection tests performed inside a clay-rich fault zone at the Tournemire IRSN underground
	laboratory Now, due to the high diffusivity, low viscosity, and low density of hydrogen leads to a high
	mobility and therefore the potential loss due to leakage along fault zones and permeability law needs to be
	revisited. The main objective of the project is to formulate this permeability evolution within a fault zone for
	H ₂ flow to be used in numerical model to study the integrity of massive H ₂ geologic reservoir.
Expected Results	The expected result is the formulation of the permeability in terms of THMX environment inside the fault zone
	to describe a H ₂ flow at the reservoir scale. From laboratory experiments carried out at the TUDelft and field
	monitoring, formulations of permeability will proposed and plugged in numerical models of H ₂ reservoirs,
	taking into account scaling effects, i.e. possible homogenization of the problem and in situ effective stress conditions. The numerical investigations will require high coding skill levels. Testing permeability laws imply
	a full control of the software environment, which can be written in matlab or C++. Understanding the meaning
	of state equations for multiple components in different phases is mandatory to develop reliable and clear codes.
	Development frameworks could be MRST toolbox (Finite volume method) or YADE-DEM (Discrete element
	method). Validation of the model will done by comparing the results with known and well-constrained
	experimental tests and/or other numerical simulations. Parametric studies will be carried to rank the
	contributions of the parameters used in the model. Then, predictive analyses will be conducted at the scale of
	a reservoir to better understand the geomechanical issues during cyclic loading in presence of fault zones
	crossing the caprock.
Secondment	TUDelph, Hadi Hajibeygi, Experimental tests.
opportunities Brief CV of	Frederic Victor Donzé is professor of Geomechanics & Geophysics and co-leading the Natural Hydrogen
main Supervisor	Observatory Group Grenoble, responsible for assessing the potential of native hydrogen
mani Super visor	(<u>https://nativeh2project.osug.fr/</u>). He is specialized in the development of numerical modelling applied to
	geosciences (tectonics, fault systems, fracturation, HM coupling) and civil engineering (dynamic loading,
	slope stability, soil mechanics). He is also involved in Geophysical prospection, ElectroMagnetic &
	MagnetoTelluric methods to identify the presence of faults and ground water)
	(https://www.researchgate.net/profile/Frederic-Donze/research). He (co-)supervised 21 PhD theses, 14 post-
	docs and 12 master students in geophysics geomechanics and civil engineering.
Dublications	Publication list: <u>https://scholar.google.fr/citations?hl=fr&user=66zPxNUAAAAJ</u>
Publications	1- Lefeuvre, N., Truche, L., Donzé, F. V., Gal, F., Tremosa, J., Fakoury, R. A., & Gaucher, E. C. (2022). Natural hydrogen migration along thrust faults in foothill basins: The North Pyrenean Frontal
	Thrust case study. Applied Geochemistry, 145, 105396.
	 Lefeuvre, N., Truche, L., Donzé, F. V., Ducoux, M., Barré, G., Fakoury, R. A., & Gaucher, E. C.
	(2021). Native H2 exploration in the western Pyrenean foothills. Geochemistry, Geophysics,
	Geosystems, 22(8), e2021GC009917.
	 3- Donzé, F. V., Truche, L., Shekari Namin, P., Lefeuvre, N., & Bazarkina, E. F. (2020). Migration of
	natural hydrogen from deep-seated sources in the São Francisco Basin, Brazil. Geosciences, 10(9),
	346.
Projects	1- Natural H ₂ exploration (French National Research Agency)